Atom inlays performed at room temperature using atomic force microscopy.

نویسندگان

  • Yoshiaki Sugimoto
  • Masayuki Abe
  • Shinji Hirayama
  • Noriaki Oyabu
  • Oscar Custance
  • Seizo Morita
چکیده

The ability to manipulate single atoms and molecules laterally for creating artificial structures on surfaces is driving us closer to the ultimate limit of two-dimensional nanoengineering. However, experiments involving this level of manipulation have been performed only at cryogenic temperatures. Scanning tunnelling microscopy has proved, so far, to be a unique tool with all the necessary capabilities for laterally pushing, pulling or sliding single atoms and molecules, and arranging them on a surface at will. Here we demonstrate, for the first time, that it is possible to perform well-controlled lateral manipulations of single atoms using near-contact atomic force microscopy even at room temperature. We report the creation of 'atom inlays', that is, artificial atomic patterns formed from a few embedded atoms in the plane of a surface. At room temperature, such atomic structures remain stable on the surface for relatively long periods of time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

U.S.-Japan Young Scientists Symposium on BioNanotechnology

Atom Manipulation at Room Temperature Using Atomic Force Microscopy Masayuki Abe, Osaka University [email protected] Creation of artificial atomic structure formed on a surface by scanning tunneling microscopy has given us possibilities in future nanoengineering. These experiments of lateral atom manipulation, however, have been demonstrated only at low temperature. So far, at room tem...

متن کامل

Atom manipulation on an insulating surface at room temperature.

Atomic manipulation enables us to fabricate a unique structure at the atomic scale. So far, many atomic manipulations have been reported on conductive surfaces, mainly at low temperature with scanning tunnelling microscopy, but atomic manipulation on an insulator at room temperature is still a long-standing challenge. Here we present a systematic atomic manipulation on an insulating surface by ...

متن کامل

Atomic force microscopy as a tool for atom manipulation.

During the past 20 years, the manipulation of atoms and molecules at surfaces has allowed the construction and characterization of model systems that could, potentially, act as building blocks for future nanoscale devices. The majority of these experiments were performed with scanning tunnelling microscopy at cryogenic temperatures. Recently, it has been shown that another scanning probe techni...

متن کامل

UV Light Activation of TiO2-Doped SnO2 Thick Film for Sensing Ethanol at Room Temperature

TiO2-doped SnO2 nanopowder is synthesized via a sol-gel method and characterized by atomic force microscopy and X-ray diffraction. Using this nanopowder, we have fabricated a novel semiconductor gas sensor that is sensitive to UV light illumination. We find that gas-sensing properties of TiO2-doped SnO2 sensor can be enhanced significantly under the exposure of UV light. The sensor exhibits a h...

متن کامل

Complex patterning by vertical interchange atom manipulation using atomic force microscopy.

The ability to incorporate individual atoms in a surface following predetermined arrangements may bring future atom-based technological enterprises closer to reality. Here, we report the assembling of complex atomic patterns at room temperature by the vertical interchange of atoms between the tip apex of an atomic force microscope and a semiconductor surface. At variance with previous methods, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature materials

دوره 4 2  شماره 

صفحات  -

تاریخ انتشار 2005